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EXECUTIVE SUMMARY 

 
Any finite element model requires validation, a distinct effort to test the results of a model 
simulation against the results obtained in a real world situation.  We have just completed a 
series of simulations that we can compare against results obtained from various real world 
experiments with the bottlenose dolphin (Tursiops truncatus).   
 
The simulations reveal three significant results.   
 
(1) Changes in Relative Position of Fat Bodies Can Adjust Beam Direction   
This is the first evidence that small changes in relative position of the fatty elements within 
the sound generation apparatus can produce small changes in beam direction.   
 
(2) Consistent Beam Direction   
The sound transmission system within the delphinid’s forehead contains several elements.  
Our virtual model allows us to tease apart the contributions that these structures make to 
the formation of an echolocation beam.  The primary finding is that the beam direction that 
emanates from the simulations is consistent across them.  This suggests that the skull is the 
primary structural element in the formation of the sound transmission beam.  The other 
elements play a major role in concentrating or “focusing” the outgoing beam.   
 
(3) Evidence for Focusing in Stages   
The simulations illustrate the narrowing of the sound transmission beam with various 
levels of refinement in structural complexity.  It appears as if structures like the melon and 
the air spaces have some effect on narrowing the beam, and their combined contribution is 
significant.   
 
All of these results are aligned with, or similar to, results obtained from live animals 
performing psychoacoustic experiments over the past 50 years.   
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INTRODUCTION   
 
The research addresses two distinct and fundamental topics: model validation and 
understanding potential acoustic impacts on odontocetes.  This research proposal has been 
subdivided into those two projects, plus two Options that could be implemented if 
additional funding becomes available.  Project #1 (Model Validation) and Project #2 
(Virtual Experiments) are the primary thrusts of our effort.   
 
Scope:   
The breakthroughs and discoveries from our prior work are significant because they were 
gathered from a little-known beaked whale species, Cuvier’s beaked whale (Ziphius 
cavirostris), that is at the forefront of concerns about the potential impacts from Navy 
sonar.  An obvious problem in working with a species for which we know so little is that 
we do not have any research by which to calibrate or assess the validity of the simulation 
results.  The work reported here will remedy that problem by constructing two models.  
One will be based on CT scans of a postmortem specimen of an Atlantic bottlenose 
dolphin that was provided to us by SeaWorld, San Diego.  The other will be based on CT 
scans of a live bottlenose dolphin that was provided by the Navy Marine Mammal Program 
at SPAWAR Pacific in San Diego.   
 
The physical properties of the tissues were measured directly from the postmortem 
specimen.  We will also use those measurements to estimate the values for the specimen 
from the Navy Marine Mammal Program, for which we only have scan information.   
 
The emphasis is placed on comparison.  The simulated results of our inquiry with the 
Atlantic bottlenose dolphin will be compared with results from the psychoacoustic 
literature and with our previous results on Cuvier’s beaked whale.   
 
 
METHODOLOGY   
 
Technical approach:   
The approach is based on physics, computing resources, and engineering principals 
combined with the anatomic details of the organism.  To date the Vibroacoustic Simulator 
is the only tool that is currently capable of finding answers to a broad spectrum of 
questions that are critical to understanding the issue of marine mammal exposure to high 
intensity sound.   
 
Our approach to the finite element modeling of vibroacoustic phenomena in biological 
tissues was described in detail in Krysl et al. (2008).  The starting point when modeling the 
geometry of biological specimens is volumetric imaging: CT scans.  From these images we 
derive directly an image-based discrete finite element model.  The intensity of the 3-D 
images data (in Hounsfield units) is mapped to material properties.  Here we used the 
mapping proposed by Soldevilla et al. (2005), and also the experimentally determined 
melon properties from Norris and Harvey (1974).  Since all the elements are rectangular 
and of the same shape, the Wilson incompatible formulation is a natural choice, because 
both the bending response and the dilatational locking insensitivity are significantly 
enhanced (Krysl et al., 2008).  The equations of motion in the discrete form (system of 
ordinary coupled differential equations) is integrated from initial conditions (to be 
described next) in time using the centered difference algorithm.   
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The so-called “phonic lips” are hypothesized to be the biosonar sound source in the 
bottlenose dolphin (Cranford, 2000; Cranford et al., 1996).  The phonic lips consist of 
constrictions in the spiracular nasal passage.  The walls of the lips contain pairs of fat 
bodies ensheathed in connective tissue (bursae).  During sound generation, air is pushed 
through the phonic lips, setting them into vibration.  As the opposing walls or lips vibrate, 
they impact one another and generate short pulses of sound.  In this work we produce 
sound in a simplified but related manner: tissue at the two locations of the bursae is given 
initial velocity which starts the tissue "blobs" in opposing directions so that they collide 
and thereby produce an acoustic pressure wave.  The location of the phonic lips could play 
a role in the forming of the echolocation beam.  The musculature associated with the 
dolphin's melon suggests that the beam may be actively distorted or shaped by the animal.  
Evidence for “beam steering” in odontocetes does exist (Amundin; Amundin, 1991a; 
Amundin, 1991b; Møhl et al., 2000; Moore et al., 2008).  Thus we also consider the 
location of the phonic lips among the sources of modeling error.   
 
Placing a simulated click source at the location of the left and right phonic lips (Cranford 
and Amundin, 2003), we can compute a wave train (simulated echolocation beam) whose 
characteristics in terms of spreading in the vertical and horizontal direction can be 
extracted at the location of the hydrophones used in the experimental studies (Au et al., 
1978; Au et al., 1986; Moore et al., 2008).   
 
In order to avoid the complications involved in modeling such an intricate mechanism 
(along the lines of, for instance, Dubrovsky, 2009) we produce sound in a simplified but 
related manner: tissue at the two locations of the bursae is given initial velocity, which 
starts the tissue "bodies" in opposing directions so that they collide and thereby produce a 
pressure wave or sound.  In effect we are producing the sound by specifying the initial 
conditions of suitably distributed nonzero velocity.   
 
We use two variants of this initial condition, which we called the spherical bursae and the 
block bursae.  Figure 1 shows the relevant parameters.  The spherical bursae model 
specifies initial velocity of equal magnitude and opposite direction at the centers of two 
touching spheres.  The initial velocity is tapered off in the form of a cosine function to zero 
at the surface of each sphere.  The line connecting the centers of the two spheres defines 
the direction of the generated sound pulse, which in a homogeneous medium would travel 
in either direction, 21 CC   or 12 CC  .   
 
The block bursae model specifies initial velocity at the center of two rectangular blocks 
that share a face.  The initial velocity is tapered off to zero at the surface of each block.  
The triple of orthonormal vectors gnd ,,  defines the orientation of this device: d  points in 
the direction of the connective tissue in the pair of the bursae as identified in the CT scan, 
n  is normal to the plane that contains the bursae, and g  completes the triple, defining the 
direction of the generated pressure pulse.  The motivation for the introduction of the block 
bursae model is the spatially extended contact the bursae present during sound generation.  
It is well known that man-made transducers in the form of an array of sources can produce 
more focused beams than point-like sources.  Apparently the dolphin's bursae use the same 
principle.   
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(a)  (b) 

 

Figure 1.  Spherical bursae (a), block bursae (b).   

 
 
 

In our simulations we take mm8D , and we set 
wwc

p
v


max

0  , where kPa1max p  

(corresponding to overpressure of 180 dB re: Pa1 ), and wwc  is the impedance of 

seawater.  For the block bursae we take mm75.112 L , mm5.72 H , and  mm5.72 W , 
and the same initial velocity magnitude as for the spherical bursae.   
 
 
SUMMARY OF RESULTS   
 

Model Validation Project   
 
We have accomplished the following tasks.   

 Conducted CT scans on a postmortem bottlenose dolphin head when provided by 
the stranding network or from an unfortunate death at a local captive colony.   

 Collected tissue samples from this new specimen and measured tissue properties.   
 Borrowed a set of CT scans from an existing library at the Navy Marine Mammal 

Program, San Diego.  (They already had CT scans from a live bottlenose dolphin.)   
 Prepared data for a sequence of successively finer grids.   
 Developed simulation scripts for validation tasks.   
 Completed segmentation of structures from CT scan images of bottlenose dolphins.   
 Computed transmission sound beam characteristics from within the dolphin heads.   

 
 
The simulations reveal three significant results.   
 
(1) Small Changes in Relative Position of Fat Bodies Can Adjust Beam Direction   
We ran simulations for eight different relative positions or configurations for the bursae, 
but we will only report on three of those cases: the original case (OC), case 1 (C1), and 
case 2 (C2).  The original case (OC) represents the position that the bursae were in for 
each animal (D1 and D2).  In Figures 2 and 3, the icons composed of closed (black) circles 
and open (white) circles represent the change in position from the OC.  In each case, the 
new position is 5 mm from the OC.   
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In the OC and C1 the axis through the center of the circles points forward or anteriorly.  
The beam patterns produced by these two configurations (OC and C1) are shown in the 
two left-hand columns in Figure 2 (rows A-E) for spherical bursae and Figure 3 (rows A-
C) for block bursae.  In all of those cases, the beam generated is more focused than for C2.  
The axis through bursae axis for C2 points upward or anterodorsally.  Clearly, these results 
support the conclusion that small adjustments in the relative position of the bursae can 
cause changes in acoustic beam focus and direction.   
 
(2) Consistent Beam Direction   
The sound generation and transmission system within the forehead of all odontocetes is 
composed of a similar set of basic elements.  The skull is the primary structural element, 
supporting the remaining soft tissue structures.   
 
One key finding from the simulations is that the beam emanates in a consistent direction, 
directly forward in all cases, even when only the skull is present.  This suggests that the 
skull is the primary beam forming element for the sound transmission beam.  The other 
elements apparently play incremental roles in concentrating or “focusing” the outgoing 
beam.   
 
(3) Evidence for Focusing in Stages   
These simulations (Figures 2 and 3) illustrate that the narrowing of the sound transmission 
beam increases with various levels of refinement in structural complexity.  It appears as if 
each additional structure (like the melon, the air spaces, source location and configuration) 
adds to the effect of narrowing the beam, and their combined contribution is significant.   
 
This notion is demonstrated by the fact that the beam gets progressively narrower as 
additional refinements are added to the model.  The progression begins with the skull only 
(Figure 2A), and continues by adding the soft tissue (Figure 2B), smoothing the melon 
(Figure 2C), adding the acoustically reflective air spaces (Figure 2D), using a scan from a 
live animal (Figure 2E), and, finally, representing the shape of the bursae as blocks, which 
closely approximates the actual anatomic condition (Figures 3A-C).   
 
The Stages could be listed as:   

 Skull only   
 All soft tissue from scans   
 Refine melon to add smoothing   
 Addition of air spaces drawn in by hand   
 Change conformation of source from spherical to elongate block   
 Adjustments of relative position of bursae elements within each pair   

 
All three of these primary results are aligned with, or are similar to, results obtained from 
live animals performing psychoacoustic experiments over the past 50 years.   
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Figure 2   
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Figure 3   
 
 
 
DISCUSSION   
 
The simulations reveal three significant results.   
 
(1) Small Changes in Relative Position of Fat Bodies Can Adjust Beam Direction   
This is a new discovery, the first evidence that small changes in relative position of the 
fatty elements within the sound generation apparatus can produce small changes or 
adjustments in bottlenose dolphin biosonar beam direction.  There are likely more 
discoveries ahead as we run additional simulations, for example adding the sound source 
on the left side of the nasal apparatus.  The details of this apparatus have been described 
previously (Cranford, 1988; Cranford, 1999; Cranford, 2000; Cranford et al., 1996; 
Cranford et al., 2008b).   
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(2) Consistent Beam Direction   
Biosonar beam formation in dolphins has been the subject of considerable research (Au, 
1980; Au, 1993; Au et al., 1978; Au et al., 1986; Au et al., 1993; Au et al., 1995; Au et al., 
1987; Cranford et al., 2008a; Diercks et al., 1973; Evans and Prescott, 1962; Norris and 
Evans, 1966; Norris et al., 1961; Schevill and Watkins, 1966).  This previous work was 
primarily concerned with describing the dimensions of the biosonar beam under particular 
circumstances with a few target species.  Sorting out the anatomic contributions to the 
formation of that beam has not been possible in the past.  This can now be accomplished 
with the tools and techniques that we have brought to bear on this issue.   
 
The sound transmission system within the delphinid’s forehead contains several elements.  
The inherent flexibility of our FEM technique allows us to tease apart the contributions 
that these structures make to the formation of an echolocation beam.  We have tested a few 
conformations for various elements.  The primary finding that the beam emanates from the 
simulations in a consistent direction suggests that the skull is the primary structural 
element in the formation of the sound transmission beam.  The other elements play an 
additive role in concentrating or “focusing” the outgoing beam.   
 
The odontocete skull has been revamped during the evolution of the biosonar system 
(Miller, 1923).  All of the soft tissues lie atop the skull and are anchored to it.  The 
consistent beam direction in all of the simulations is to be expected because other studies 
have shown that a similar directional beam can be formed by the skull alone (Evans et al., 
1964; Romanenko, 1973; Romanenko, 1974).   
 
(3) Evidence for Focusing in Stages   
The idea of focusing in stages was put forth by Dr. Kenneth S. Norris more than 40 years 
ago (Norris, 1964; Norris, 1968; Norris, 1969; Norris, 1975).  It is only by the 
development of our FEM techniques that we can now test and apparently verify his 
hypothesis.   
 
 
FUTURE PLANS   
 
We will continue to test adjustments or small changes in the configuration of the 
components of the nasal apparatus in order to tease apart the functional contributions of 
these anatomic components.   
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